Data Analytics Training by Experts

;

Our Training Process

Data Analytics - Syllabus, Fees & Duration

  1. Learn Python Program from Scratch

    • Basic programming concepts
    • Object -oriented programming
    • Data types, variables, strings, loops, and functions
    • Software engineering using Python.
  2. Statistical and Mathematical Essential for Data Science

    • Collection, classification, and analysis of data
    • A foundational part of Data Science
    • Explain measures of central tendency and dispersion
    • comprehend skewness, correlation, regression, distribution
  3. Data Science with Python

    • Jupyter Notebook and PyCharm based lab environment
    • Machine Learning
    • Data visualization
    • Web scraping
    • Natural language processing
  4. Database

  5. Machine Learning

    • Mathematical and heuristic aspects
    • Hands-on modeling to develop algorithms
    • Advanced Machine Learning knowledge.
  6. Data Analytics with R:

    • Data wrangling
    • data exploration
    • data visualization
    • predictive analytics
    • descriptive analytics techniques
    • import and export data in R
    • data structures in R
    • various statistical concepts
    • cluster analysis
    • forecasting
  7. Visualization with Tableau

    • Data Visualization
    • combo charts
    • working with filters
    • parameters
    • sets
    • building interactive dashboards
  8. Visualization with Power BI

    • Data filtering
    • Data manipulations
    • understanding the patterns in data
    • create customized dashboards with powerful developer tools

Technologies Training:

  • Python:

    • Introduction to Python and Computer Programming
    • Data Types
    • Variables
    • Basic Input -Output Operations
    • Basic Operators
    • Boolean Values
    • Conditional Execution
    • Loops
    • Lists and List Processing
    • Logical and Bitwise Operations
    • Functions
    • Tuples
    • Dictionaries
    • Sets
    • Data Processing
    • Modules
    • Packages
    • String and List Methods
    • Exceptions
    • File Handlings
    • li> Regular expressions
    • the Object - Oriented Approach: Classes, Methods, Objects
    • Standard Objective Features; Exception Handling
    • Working with Files
  • R:

    • R Introduction
    • Data Inputting in R
    • Strings
    • Vectors
    • Lists
    • Matrices
    • Arrays Functions and Programming in R
    • Data manipulation in R
    • Factors
    • DataFrame
    • Packages
    • Data Shaping
    • R-Data Interface
    • Web Data and Database
    • Charts-Pie
    • Bar Charts
    • Boxplots, Histograms
    • LineGraphs
    • Mean
    • Median
    • Mode
    • Regression-Linear
    • Multiple
    • Logistic
    • Poisson
    • Distribution-Normal
    • Binomial
    • Analysis-Covariance
    • Time Series, Survival
    • Nonlinear Least Square
    • Decision Tree
    • Random Forestc
  • MySQL

    • MySQL – Introduction
    • Installation
    • Create Database
    • Drop Database
    • Selecting Database
    • Data Types
    • Create Tables
    • Drop Tables
    • Insert Query
    • Select Query
    • WHERE Clause
    • Update Query
    • DELETE Query
    • LIKE Clause
    • Sorting Results
    • Using Joins
    • Handling NULL Values
    • ALTER Command
    • Aggregate functions
    • MySQL Clauses
    • MySQL Conditions
  • Matplotlib:

    • Scatter plot
    • Bar charts
    • histogram
    • Stack charts
    • Legend title Style
    • Figures and subplots
    • Plotting function in pandas
    • Labelling and arranging figures
    • Save plots.
  • Seaborn:

    • Style functions
    • Color palettes
    • Distribution plots
    • Categorical plots
    • Regression plots
    • Axis grid objects.
  • NumPy

    • Creating NumPy arrays
    • Indexing and slicing in NumPy
    • Downloading and parsing data Creating multidimensional arrays
    • NumPy Data types
    • Array attributes
    • Indexing and Slicing
    • Creating array views copies
    • Manipulating array shapes I/O.
  • Pandas:

    • Using multilevel series
    • Series and Data Frames
    • Grouping
    • aggregating
    • Merge Data Frames
    • Generate summary tables
    • Group data into logical pieces
    • manipulate dates
    • Creating metrics for analysis
    • Data wrangling
    • Merging and joining
    • Data Mugging using Pandas
    • Building a Predictive Mode.
  • Scikit-learn:

    • Scikit Learn Overview
    • Plotting a graph
    • Identifying features and labels
    • Saving and opening a model
    • Classification
    • Train / test split
    • What is KNN? What is SVM?
    • Linear regression
    • Logistic vs linear regression
    • KMeans
    • Neural networks
    • Overfitting and underfitting
    • Backpropagation
    • Cost function and gradient descent, CNNs
  • Tableau

    • Tableau Architecture
    • File Types
    • Data Types
    • Tableau Operator
    • String Functions
    • Date Functions Logical Functions
    • Aggregate FunctionsvJoins in Tableau
    • Types of Tableau Data Source
    • Data Extracts
    • Filters
    • Sorting
    • Formatting
    • Adding Worksheets and Renaming Worksheet In Tableau
    • Tableau Save
    • Reorder and Delete Worksheet
    • Charts
    • dashboard.
  • Power BI

    • Power BI Architecture
    • Components
    • Power BI Desktop
    • Connect to Data in Power BI Desktop
    • Data Sources for Power BI
    • DAX in Power BI
    • Q & A in Power BI
    • Filters in Power BI, Power BI Query Overview
    • Creating and Using Measures in Power
    • Calculated Columns
    • Data Visualizations
    • Charts
    • Area
    • Funnel
    • Combo
    • Donut
    • Waterfall
    • Line
    • Maps
    • Bar
    • KPI
    • Power BI Dashboard

Download Syllabus - Data Analytics
Course Fees
10000+
20+
50+
25+

Data Analytics Jobs in Swords

Enjoy the demand

Find jobs related to Data Analytics in search engines (Google, Bing, Yahoo) and recruitment websites (monsterindia, placementindia, naukri, jobsNEAR.in, indeed.co.in, shine.com etc.) based in Swords, chennai and europe countries. You can find many jobs for freshers related to the job positions in Swords.

  • Data Analyst
  • Business Intelligence Analyst
  • Data Scientist
  • Data Engineer
  • Quantitative Analyst
  • Market Research Analyst
  • Operations Analyst
  • Healthcare Analyst
  • Supply Chain Analyst
  • Fraud Analyst

Data Analytics Internship/Course Details

Data Analytics internship jobs in Swords
Data Analytics Data analytics training involves acquiring the knowledge and skills needed to analyze and interpret data to make informed business decisions. A data analytics course is an educational program designed to teach individuals the skills and knowledge needed to work in the field of data analytics. These courses are offered by various educational institutions, including universities, online platforms, and specialized training providers. Here is a step-by-step guide to help you get started with data analytics training: Remember that practice is essential in data analytics. Here are some common components of a data analytics course:. Work on real-world projects, participate in online competitions (such as Kaggle), and continue learning to enhance your skills. The content of data analytics courses can vary, but they typically cover a range of topics related to collecting, analyzing, and interpreting data to extract valuable insights.

List of All Courses & Internship by TechnoMaster

Success Stories

The enviable salary packages and track record of our previous students are the proof of our excellence. Please go through our students' reviews about our training methods and faculty and compare it to the recorded video classes that most of the other institutes offer. See for yourself how TechnoMaster is truly unique.

List of Training Institutes / Companies in Swords

  • AestheticTrainingAcademyIreland(ATAI)Limited | Location details: 52a Main St, Swords Glebe, Swords, Co. Dublin, K67 K7X6, Ireland | Classification: Medical school, Medical school | Visit Online: atai.ie | Contact Number (Helpline): +353 1 524 1511
  • AestheticTrainingAcademyIreland(ATAI)Limited | Location details: 52a Main St, Swords Glebe, Swords, Co. Dublin, K67 K7X6, Ireland | Classification: Medical school, Medical school | Visit Online: atai.ie | Contact Number (Helpline): +353 1 524 1511
  • PitmanTrainingDublin-Swords | Location details: Chamber Buildings, North St, Townparks, Swords, Co. Dublin, K67 A3H7, Ireland | Classification: Educational institution, Educational institution | Visit Online: pitman-training.ie | Contact Number (Helpline): +353 1 840 4075
  • PitmanTrainingDublin-Swords | Location details: Chamber Buildings, North St, Townparks, Swords, Co. Dublin, K67 A3H7, Ireland | Classification: Educational institution, Educational institution | Visit Online: pitman-training.ie | Contact Number (Helpline): +353 1 840 4075
 courses in Swords
On flange- hilted brands this would occasionally lead to a complete break of the bow. On aged brands with a long history of combat leading to frequent damage and form/ resharpening, the lower part of the shoulders would occasionally break, due to combined resharpening and blows from adversary brands(Fig. 12 – 15), whereas citation cuirasses were rare, belonging to officers( Jarva 1995, 127ff. In conclusion there remains no doubt as to the part of warfare and brand fighting in Citation Age Europe. The reason for this bending remained obscure until I talked to a ‘ ultramodern ’ swordfighter, who explained that this was a well- known point indeed moment. It's evocative of a ultramodern police cane, and has the same practical functions it prevents the stoner from losing the brand, it allows him to relax his hand during combat, and eventually it allows him to add further swing and power to a slashing movement. Holding the brand in one’s right hand the bending is towards the left wing, and if one changes the brand to make it bend to the right it changes the balance and feels wrong. The stoner ‘ cinches ’ the brand through the addition of the shoulders in the grip, which means that his movements come much more precise and controlled. This resharpening of the tip is relatively frequent, especially during the Middle Citation Age, but indeed during the Late Citation Age, stressing the generalized nature of brand fighting, combining both thrusting and slashing. The damage is frequently heavier to one side, as the swordfighter would typically hold his brand in the same way(Fig.

Trained more than 10000+ students who trust Nestsoft TechnoMaster

Get Your Personal Trainer